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A: Organizing SWERC Solutions of SWERC 2021-2022

A Organizing SWERC
Author: Federico Glaudo
Preparation: Federico Glaudo

This is the ice breaker problem of the contest. To solve it one shall implement what is described in
the statement.

One way to implement it is to keep an array beauty[1 . . . 10] (initialized to 0), so that, for 1 ≤
diff ≤ 10, the value beauty[diff] corresponds to the maximum beauty of a proposed problem
with difficulty equal to diff. One can update the entries of beauty while processing the input. In
the end, if some entries of beauty are still 0 then the correct output is MOREPROBLEMS, otherwise it
is the sum of the entries beauty[1] + beauty[2] + · · ·+ beauty[10].

Notice that the small size of the input allows for less efficient solutions. For instance, one could
iterate 10 times over the problems, once for each difficulty, and find the maximum beauty associated
with difficulty i during the i-th iteration (this way, array beauty is not needed).
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B: Drone Photo Solutions of SWERC 2021-2022

B Drone Photo
Author: Andrea Ciprietti
Preparation: Filippo Baroni

For each i = 1, . . . , n2, let:

• si denote the i-year-old contestant;

• ui be the number of contestants on the same row as si who are (strictly) under i years old;

• vi be the number of contestants on the same column as si who are (strictly) under i years old.

The numbers ui and vi can be easily computed in O(n2) after sorting the contestants by age, by
iterating on them in increasing order of age and keeping track of how many contestants in each row
and column we have already considered.

Let A be the answer to the problem, i.e. the number of ways to choose four contestants so that the
poles do not cross. We claim that

2A =
n2∑
i=1

[ui(n− 1− vi) + (n− 1− ui)vi].

This gives a solution to the problem with overall time complexity O(n2 log n), or O(n2) if we use
counting sort (which is feasible since the ages are in the range [1, n2]). Let us now justify the claim.

Given an axis-aligned rectangle, we say that a contestant s standing on one if its vertices is inter-
mediate if exactly one of the two contestants on vertices adjacent to s is younger than s. Rectangles
in which the poles don’t cross can be characterised by the fact that exactly two of the contestants
on their vertices are intermediate (see figure (a) below for an example). On the contrary, rectangles
in which the poles do cross have no intermediate contestants (figure (b)).
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28

(b)

7 2

59

(a)

The right-hand side of the equation is the sum over all contestants s of the number of rectangles
for which s is intermediate. Therefore, by the previous remark, this summation equals twice the
number of rectangles with non-crossing poles, i.e. twice the answer to the problem.
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C: Il Derby della Madonnina Solutions of SWERC 2021-2022

C Il Derby della Madonnina
Author: Gerard Orriols
Preparation: Gerard Orriols

Let xi := vti − ai and yi := vti + ai for i = 1, . . . , n. The main observation to solve this problem
is that a sequence of kicks with indices i1, . . . , ik can be seen (in this order and starting from the
first one) if and only if both sequences xi1 , . . . , xik and yi1 , . . . , yik are nondecreasing. To see this,
observe that

xi ≤ xj ⇐⇒ vti − ai ≤ vtj − aj ⇐⇒ aj − ai ≤ v(tj − ti)

and
yi ≤ yj ⇐⇒ vti + ai ≤ vtj + aj ⇐⇒ ai − aj ≤ v(tj − ti).

Moreover
ti =

xi + yi
2v

,

so if both sequences are nondecreasing, then their corresponding times are in increasing order and
it holds that |aiℓ+1

− aiℓ | ≤ v(tiℓ+1
− tiℓ), which means that each event can be reached from the

previous one. The converse is clear from the previous inequalities.

In order to impose the condition that the events can be reached starting from position 0 at time 0,
it is enough to remove all points which cannot be reached from the origin, that is, with |ai| > vti.
We will assume that these events have been eliminated and still denote by n the total number of
events.

We have thus reduced the problem to finding the longest increasing subsequence of the y-values when
ordered by increasing x-value. More precisely, let (p1, . . . , pn) be the permutation of (1, . . . , n) such
that

i < j =⇒ xpi < xpj or (xpi = xpj and ypi < ypj ).

Then the solution of the problem is the length of the longest (non-strictly) increasing subsequence
of the list yp1 , . . . , ypn .

There are classical algorithms to solve this efficiently in O(n log n) time. For instance, this complex-
ity is achieved by an approach that processes the elements from left to right and uses binary searches
to update the value of the smallest possible last element of a length-k increasing subsequence in
every prefix for every k.
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D: Ice Cream Shop Solutions of SWERC 2021-2022

D Ice Cream Shop
Author: Stefanie Zbinden
Preparation: Pedro Paredes

Suppose there are ice cream shops located a and b meters to the right of the first hut, such that
a < b. If we place our ice cream shop in any location in the interval [a, b] it can only be strictly
closer to huts located in the interval (a, b), since any hut located at or before a will be closer to the
ice cream shop located at a and any hut located at or after b will be closer to the ice cream shop
located at b. We now present two approaches to solve the problem starting from this observation.

First solution
Let a < b be the positions of two ice cream shops, and let us further assume that there is no other
ice cream shop between a and b. Of course, it is never convenient to put the new shop at a or b.
What happens if we place our new shop at s ∈ (a, b)? It is easy to see that the only huts whose
people will buy ice creams are those in the open interval

(
a+s
2 , s+b

2

)
. Notice that this interval has

length s+b
2 − a+s

2 = b−a
2 , i.e., half the length of (a, b), which is independent of s.

ℓ r

a bs

On the other hand, consider an interval (l, r) such that a ≤ l < r ≤ b and r− l = b−a
2 . If we choose

s = 2l − a, the interval
(
a+s
2 , s+b

2

)
is exactly (l, r). This means that for every interval (l, r) of

length b−a
2 which lies entirely in (a, b), it is possible to achieve a total number of ice creams given

by
f(l, r) :=

∑
100i∈ (l, r)

pi+1.

(Recall that the position of the i-th hut is 100(i− 1).)

Thus the answer is the maximum of f(l, r), over all intervals such that there exist a and b as above
and r − l ≤ b−a

2 . Also notice that we can restrict our search to the intervals with l = 100k − 1
2 for

some 0 ≤ k ≤ n− 1. We can therefore proceed as follows.

• Iterate over k = 0, . . . , n− 1.

• For each k, find the greatest xj < 100k. This can be done in amortized constant time — or via
binary search — after sorting the xj ’s.

• Compute f(l, r), where l = 100k − 1
2 and r = min

(
xj+1, l +

xj+1−xj

2

)
(assume the xj ’s are

sorted). This is easy to do having precomputed the prefix sums of p1, . . . , pn.

• Return the maximum of all these values.

One must be careful with “boundary conditions”, that is, values of k such that 100k lies to the left
or to the right of all ice cream shops. These are best handled by introducing two dummy shops at
positions −∞ and +∞.

The solution has O(n+m logm) time complexity and O(n+m) space complexity.
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D: Ice Cream Shop Solutions of SWERC 2021-2022

Second solution
Pick again two ice cream shops at a < b, with no other ice cream shops in between, and consider
a hut located at h such that a < h < b. If we place our shop in s such that s is between a and
h, then we will always be closer to h than the ice cream shop located at a. However, we are only
closer than the ice cream shop at b if the distance from s to h is smaller than the distance from h
to b. Formally this means h− s < b− h. If we rearrange this expression, we conclude that we will
be closer to h if s > 2h− b. Analogously, if we place our shop in s such that s is between h and b,
we will be closer to h if s < 2h− a. Hence, we conclude that if we want to be closer to h then we
have to place our shop in the interval (2h − b, 2h − a) (note that this is an open interval since we
want to be strictly closer to h).

Using this idea, we can now compute for every hut h an interval such that if we place our shop in
any point in that interval then our shop will be the closest to hut h. Let us assume we have all
these intervals, how do we determine the optimal solution from this information? Notice that the
optimal solution is a point that maximizes the sum of the pi of all the intervals it is contained in.
We can find this maximum sum efficiently using a sweep-line approach. Picture a vertical line that
is going to sweep through all of these intervals from left to right. As this line moves we want to
keep the sum of the pi corresponding to the intervals it currently intersects, so we store that value
in a counter and whenever the line reaches the starting point of an interval we add its value to the
counter, conversely whenever it reaches the endpoint of an interval we subtract its value from the
counter. The solution is the maximum value the counter achieves during this process.

To implement this efficiently, the only thing we need to observe is that the only relevant “events”
to this procedure are the start- and endpoints of intervals. So our sweep-line algorithm can be
implemented as follows: for every interval (li, ri) corresponding to hut pi add a point (li, pi) and a
point (ri, −pi) to a list of points. Sort this list according to the first component. Iterate through
the sorted points and store a counter (initially 0). Whenever we reach a point (a, b) add b to the
counter. This requires time O(n log n) since we have to sort all of the 2n “event” points and then
iterate through them once.

Before doing that, however, we need to compute each hut’s interval. To do so we have to determine
the closest ice cream shops a and b such that a < h and b > h and then the interval is given by
(2h− b, 2h− a). If we sort the xi locations of all the ice cream shops we can find this using binary
search or by iterating through the huts and ice cream shops simultaneously (this is also known as
a two pointers technique). The time complexity of the binary search method is O((m + n) logm),
since we first sort the xi and then for each hut we perform one binary search. The time complexity
of the two pointers method is O(m logm + n), since we first sort the xi and then iterate through
all the n huts and m ice cream shops once.

Combining all of this we get a solution that runs in O(m logm+ n log n) time.
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E: Evolution of Weasels Solutions of SWERC 2021-2022

E Evolution of Weasels
Author: Stefanie Zbinden
Preparation: Stefanie Zbinden

To solve the problem we need the following observations.

• Every mutation is reversible. Hence, instead of trying to find a sequence of mutations of the
string u to get to the string v, we can try to find a sequence of mutations of the string u and a
sequence of mutations of the string v such that both of them are the same after the mutations.

• In all possible mutations, we never change the parity of the occurrence of a character. Thus,
if the parity of the occurrences of A, B and C is not the same in u and v, there does not exist
a sequence of mutations to get from u to v. For the rest of the solution we assume that the
parities are the same in both strings.

We can transform the string AB to the string BA via the following sequence of moves: start with AB,
then insert BB at the back of the string to get ABBB, then insert the string ABAB in the second to
last position to get ABBABABB. Removing the two occurences of BB we get the string AABA and then
removing AA we get to BA. A similar trick can be done to transform the string BC to the string CB.
While this series of steps might seem magical, viewing the problem as a group theoretic problem
(see a later section) gives us this observation almost for free.

The observation above tells us that we can move the letter B to any position we want and can
essentially ignore it; let u′ and v′ be the strings we obtain from u and v when removing all occurrences
of B. When ignoring the letter B, the strings ABAB and BCBC are the same as the strings AA and CC,
thus we now have strings consisting of the letters A and C and we can add and remove substrings
of the form AA and CC. This is a much easier problem. We can iteratively remove occurences of
AA or CC from u′ and v′ until no removal is possible anymore. If the strings are the same after the
removal, a sequence of mutations is possible, otherwise it is not.

Optimizing the runtime. If we remove occurrences of AA and CC iteratively the runtime of our
algorithm is quadratic (in the length of the strings), which is fast enough to pass. There exists
a linear time algorithm: Keep a stack of the substring you visited but could not remove (at the
beginning, this is empty). Then iterate through your string. If the letter you currently look at is
the same as the last letter in your stack, delete the last letter in your stack. If not add the letter to
your stack.

Viewing the problem as a group theoretic problem
This is a different perspective on the problem and might require some knowledge about groups
and their presentations to understand. In the language of groups, the problem statement can be
reformulated as follows: Do the words u and v represent the same element in the group G = {A, B, C |
A2 = B2 = C2 = ABAB = BCBC = 1}? The words u and v represent the same element if and only if
w = uv−1 represents the identity in G. Furthermore A and B commute: A2 = 1 implies that A = A−1

and the same holds for B and C. Thus, 1 = ABAB = ABA−1B−1, which directly implies AB = BA.
Analogously, we get that BC = CB.

Now the only thing left to check is:

• Does the letter B occur evenly many times in w?
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E: Evolution of Weasels Solutions of SWERC 2021-2022

• After deleting all occurences of B from w, can we get from w to the empty word by deleting AA
or CC?

If the answer to one of those questions is no, then w does not represent the identity. If both answers
are yes, w does represent the identity.

Some background about the problem. The problem of telling whether two words represent the
same element in a group is called the word problem, and is a widely studied problem in Mathematics.
While it is proven to be unsolvable for some groups, the group G we are dealing with in this problem
is a Coxeter group, where the word problem is always solvable using Tits’ algorithm.
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F: Bottle Arrangements Solutions of SWERC 2021-2022

F Bottle Arrangements
Author: Andrea Ciprietti
Preparation: Andrea Ciprietti

Let rmax be the maximum number of bottles of red wines requested by one critic, i.e., rmax =
max{r1, r2, . . . , rm}. Likewise, let wmax be the maximum number of white wines requested by one
critic, i.e., wmax = max{w1, w2, . . . , wm}. Then, one can notice that, if rmax + wmax > n, there is
no valid arrangement, simply because n bottles are not sufficient.

On the other hand, suppose that rmax + wmax ≤ n. In this case, it is not difficult to produce an
arrangement that satisfies all the requests: for instance, one can have the first rmax bottles be red
wines, and the remaining n − rmax be white wines (note that the number n − rmax is nonnegative
under our hypothesis). Then, if the i-th critic has requested ri ≤ rmax red wines and wi ≤ wmax

white wines, they can choose the interval starting at position a = rmax − ri + 1 and ending at
position b = rmax + wi (it can be noticed that both these positions are in the range [1, n]).

a b
· · · · · · · · · · · ·

ri wi

The algorithm simply iterates over all critics, finds the values of rmax and wmax, checks whether their
sum does not exceed n and, if that is the case, produces a valid string such as the one described.

Both the runtime and used memory are O(n+m).
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G: Round Table Solutions of SWERC 2021-2022

G Round Table
Author: Petr Mitrichev
Preparation: Petr Mitrichev

Main assumption
After playing a bit with the second sample test case one can notice that there are many sequences
of swaps of the same length that achieve the same result, and as long as we always swap two people
such that the person with a larger number is on the left before the swap, then we always achieve
the goal in the minimum number of swaps.

Let us first construct a solution which relies on this assumption, and then prove that the assumption
is correct. We need to find any way to arrive at the given permutation from the initial one such
that in each swap the person with a larger number is on the left, and count the number of swaps
needed efficiently.

Algorithm
We will construct our permutation in steps. After the i-th step, the people with numbers from 1 to
i will be in the correct circular order, and the people with numbers from i + 1 to n will be sitting
in the order of their numbers directly to the right of person i.

In the starting arrangement the condition above is already satisfied for i = 2, since there is just one
circular order for two people.

To perform the (i+ 1)-th step, we need to do the following: person i+ 1 is currently sitting to the
right of person i, but they need to be sitting to the right of some other person ji which is determined
as the closest person on the left of person i+ 1 that has a number between 1 and i.

Since we cannot move the person i + 1 to the left, as we cannot swap person i and person i + 1,
the only way to achieve this is by moving person i + 1 to the right. But we can’t do this directly
because person i + 2 is there, so what we are going to do is move the entire block of people from
i+ 1 to n to the right.

Moving the block of people from i+ 1 to n by one position to the right takes n− i swaps, and we
need to do this di times where di is the circular distance from person i to person ji when going to
the right, and only considering people with numbers from 1 to i.

The total number of swaps can therefore be computed as f(p) =
n−1∑
i=2

di(n− i). The numbers di can

be computed using a standard data structure such as a segment tree, a Fenwick tree, or a balanced
search tree in O(n log n).

Proof of the main assumption
Now we need to repay our debts and prove the assumption. It suffices to prove the following.

Lemma. If a permutation q differs from a permutation p in only one swap of adjacent elements a
(on the left) and b (on the right) such that a > b, then f(q)− f(p) = 1, where f(p) is the number
of operations used by the above algorithm.

Proof. Indeed, almost all terms in f(p) and f(q) sums will be the same. Which terms are going to
differ? The quantity da−1 will increase by 1, since the person a will now need to travel one more
step to the right to overtake b. Conversely, da will decrease by 1, since the person a + 1 will now
need to travel one less step to the right as they will have already overtaken b earlier. All other
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G: Round Table Solutions of SWERC 2021-2022

values of di will stay unchanged. So f(q)− f(p) = (n− (a− 1))− (n− a) = 1. ■

By applying the lemma in reverse, we can also see that performing a swap where the largest element
is on the right will decrease f(p) by 1. So every swap either increases or decreases f(p) by 1, and
f(id) = 0 (id stands for the identity permutation), therefore f(p) is indeed the smallest number of
swaps needed to reach permutation p, and it does not matter in which order we make the swaps as
long as we always make swaps where the person with a larger number is on the left.

Parting words
This problem was inspired by the following paper, where you can learn more about this setup:
Abram, Antoine, Nathan Chapelier-Laget, and Christophe Reutenauer. “An Order on Circular
Permutations.” The Electronic Journal of Combinatorics (2021): P3-31.

The paper also mentions that this setup was used for USAMO 2010, Problem 2. We hope that none
of the participants have seen the paper or the USAMO problem before.

We found it quite remarkable that the answer is O(n3) in magnitude but the order of swaps does
not matter, just like in the non-circular problem without any restrictions on swaps where one would
simply count the number of inversions in a permutation. We hope you enjoyed solving this problem,
too!
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H: Pandemic Restrictions Solutions of SWERC 2021-2022

H Pandemic Restrictions
Author: Gerard Orriols
Preparation: Gerard Orriols

Let us start with some definitions that will make the presentation clearer. Given three points X,Y
and Z in the plane, let f(X, Y, Z) be the minimum of XP + Y P +ZP over all points P . It is well
known that this minimum actually exists and is achieved at a unique point called the Fermat point
of the triangle XY Z.

For fixed X and Y , let fXY (Z) := f(X, Y, Z) and define

g(W ) := max(fAB(W ), fAC(W ), fBC(W )),

where A,B and C are the positions of the three friends.

For a given parameter r, the condition that Z is a valid residence point is equivalent to g(Z) ≤ r.
Thus, no valid residence point exists if and only if min g > r, and therefore the minimum value of
r that works is equal to the minimum of g over all points of the plane.

We claim that g is convex, hence this minimum exists and we can find it efficiently. This relies on
the following two observations:

• The pointwise maximum of a finite set of convex functions is convex.

• The function fXY is convex.

The first observation is a standard fact. For the second observation, let X, Y be two points,
0 ≤ t ≤ 1, and let P, Q be the respective Fermat points of the triangles ABX and ABY . Then,
denoting Z = tX + (1− t)Y and R = tP + (1− t)Q, we have that

AR = |A− tP − (1− t)Q| ≤ tAP + (1− t)AQ,

BR = |B − tP − (1− t)Q| ≤ tBP + (1− t)BQ,

and
ZR = |t(X − P ) + (1− t)(Y −Q)| ≤ tXP + (1− t)Y Q,

so adding up the three inequalities we get that

fAB(Z) ≤ AR+BR+ ZR ≤ tfAB(X) + (1− t)fAB(Y ).

In view of these facts, if we know how to compute f(X, Y, Z) efficiently we can solve the problem
with a double ternary search on g. There are ways to achieve this in O(1) time by distinguishing
two cases:

• If one of the angles of triangle XY Z is greater than 2π/3, then the corresponding vertex is the
Fermat point.

• Otherwise the Fermat point can be computed using the construction of the Napoleon triangle,
or the sum of its distances can be computed more straightforwardly using the following formula:

f(X, Y, Z) =

√
a2 + b2 + c2 + 4

√
3S

2
.

(Here a, b, c are the sidelengths and S is the area of the triangle.)
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H: Pandemic Restrictions Solutions of SWERC 2021-2022

This solution has a total complexity of O(| log ε|2), where ε is the required precision. Alternatively,
each of the three Fermat points can be computed using a double ternary search on its own, giving
a total complexity of O(| log ε|4), which is also fast enough.
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I: Antennas Solutions of SWERC 2021-2022

I Antennas
Author: Simon Mauras
Preparation: Michal Svagerka

Let’s model the problem as an undirected graph, where the vertex i corresponds to the antenna i
and vertices i and j are connected with an edge if and only if the corresponding antennas are able to
communicate directly, that is |i− j| ≤ min(pi, pj). In this formulation, the answer to the question
posed in the problem statement is simply the shortest distance between a and b.

To compute the shortest distance, we would like to be able to construct the graph and run a breadth-
first search. Unfortunately, we cannot afford to do that, as the number of edges can be in the order
of n2. We need a more efficient approach. We examine two options.

Improving the BFS
The inefficiency of a breadth-first search on a dense graph lies in the fact that the majority of the
traversed edges lead to a vertex that has already been visited. Ideally, for every vertex, we would
like to process only one of the incoming edges. Should we achieve this property, the running time
would be linear in the number of vertices, not in the number of edges.

Let’s decompose each edge into two directed edges, one in each direction. As soon as we traverse
the first edge incoming to a particular vertex, we remove all other edges incoming to this vertex.
This idea leads to the desired property of only processing each vertex once, nevertheless on its own
it doesn’t affect the time complexity as we still generate the full graph.

Let’s consider for a brief moment how can we generate the graph in the first place. A naïve approach
is to consider, for a fixed i, all 1 ≤ j ≤ n and check whether i and j can communicate with each
other. However, we can observe that we do not need to test all j’s up to n — it is sufficient to only
iterate up to min(n, i+ pi), because |i− j| = j− i ≤ pi must hold. Similarly, a tighter lower bound
for the iteration is max(1, i− pi) instead of i.

We can do even better than that. Define lj := j − pj . For j ∈ (i, i+ pi] to be able to communicate
with i, we just need lj ≤ i. Similarly, for j ∈ [i− pi, i) we need rj := j + pj ≥ i. To summarise, we
need to find all j ∈ [i− pi, i) such that rj ≥ i and all j ∈ (i, i+ pi] such that lj ≤ i. We can do this
by storing the values rj and lj in two segment trees that return the minimum and maximum on a
queried interval, respectively, together with the index where this minimum or maximum is achieved,
and querying the appropriate interval as long as the inequality rj ≥ i or lj ≤ i holds. Now, recall
the previous idea — removing all edges incoming to a vertex once we find its distance from a. In
this implementation, we can achieve this in O(log n) time by simply setting the corresponding lj to
∞ and rj to −∞.

Using these techniques, we can process a vertex in O(d log n), where d is the out-degree of the vertex
when we are processing it. Since, for each vertex, we only process at most a single incoming edge,
the total running time is O(n log n).

Iterating on a restricted problem
Let us consider a restricted version of the problem. In this version, antenna i is allowed to send
a message to j if |i − j| ≤ min(pi, pj) and i < j. In other words, a message can only be sent to
an antenna with a strictly larger index, and never in the opposite direction. This problem can be
solved by a single sweep, as follows.

Maintain a segment tree S of size n, that returns the minimum on an interval, and supports single
element update. We process the antennas in order of increasing index. When processing an antenna
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i, we do the following operations:

• Set S[i] = dist[i] where dist[i] is the length of the shortest known path from a to i. Initially
dist[a] = 0, and all other values are initialised to ∞.

• For all antennas j such that j+ pj − 1 = i (i.e. j is able to reach i− 1 but not i), set S[j] =∞.

• Set dist[i] = 1 + S.min(i− pi, i).

The purpose of removing an antenna by setting S[j] =∞ is evident — as the antennas are processed
in order of increasing indices, we know that none of the antennas to be processed can communicate
with j. The complexity of this algorithm is O(n log n). Note that it is trivial to modify this
algorithm for a version of the problem where all communication goes to antennas with a lower
index instead.

How does this help to solve our original problem? We can alternate between the two versions —
the one that only allows communication towards antennas with larger indices (i.e. to the right),
and the one with smaller ones (i.e. to the left). This process is repeated while the array dist is
changing. Once a fixed state is reached, we have a correct solution.

We argue that only O(log n) iterations of this outer loop will be performed, in other words there
exists a shortest path that “changes direction” at most O(log n) times. The basic idea of the proof
is that when two successive direction changes are performed, the distances between antennas at
least doubled, otherwise there would exist a path of a shorter or equal length with fewer direction
changes. The details of the proof are left as an exercise to the reader.

All things considered, this yields an O(n log2 n) algorithm, which is sufficient given a careful imple-
mentation.
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J: Boundary Solutions of SWERC 2021-2022

J Boundary
Author: Michal Svagerka
Preparation: Michal Svagerka

First, observe that we can tile any rectangle with tiles of size 1× 1. From now on, we will consider
a fixed a > 1.

Let’s investigate what happens in the corners of the rectangle. Each corner is covered either by a
tile that is placed horizontally, or by a tile that is placed vertically. Below is an example of one of
24 = 16 possibilities, with the corner tiles in gray.

Once we place those tiles (up to 4, fewer if the tile length is greater than w
2 or l

2) the positions of
the rest are uniquely determined.

We can now put four constraints on the value of a, one for each side of the rectangle. These
constraints are of form a | w − x or a | l − x, where | is the “divides without remainde” relation,
and x is the number of positions on that side that are covered by a tile placed in a perpendicular
direction, e.g. a vertical tile on a horizontal side. Clearly, this can only happen in the corners of
the rectangle, hence x is between 0 and 2 for all sides.

In the above figure, the top side yields the constraint a | w − 0, the bottom one a | w − 2,
and both the left and right sides a | l − 1. Put together, we have a necessary condition a |
gcd(w − 0, w − 2, l − 1, l − 1), where gcd is the greatest common divisor. Clearly, the condition is
also sufficient, i.e. for an a fulfilling this divisibility there is a rectangle tiling.

To summarise, we consider all 16 possibilities for the tile orientations in the corners, find the gcd
of the constraints using Euclidean algorithm, and then compute its divisiors by a trial division.
Finally, we return the sorted set of all the divisors. The total time complexity is O(

√
min(w, l))

per test case, dominated by the trial division.

Note that some of the 16 cases are the same up to mirroring or rotation, and some are clearly
impossible. Hence we only need to factor the following values:

• gcd(w − 1, l − 1)

• gcd(w, l − 2)
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• gcd(w − 2, l)

• gcd(w − 1, l − 2, l)

• gcd(w − 2, w, l − 1)

The last two can only be 1 or 2, and if they are both 1, this implies that one of the first three gcds
is divisible by 2. Therefore a = 2 is always a solution — we can simply insert it to the solution
set, and only compute and factor the first three gcds. This does not change the asymptotic time
complexity, nevertheless it is a useful optimisation.

17



K: Gastronomic Event Solutions of SWERC 2021-2022

K Gastronomic Event
Author: Cesc Folch
Preparation: Cesc Folch

This is a classical problem in which one must find a “simple” characterization of what the optimal
solution looks like, and then restrict the search for the maximum to the (much smaller, much more
regular) family of instances that satisfy the characterization.

In our specific case, the first part of this paradigm is by far the most difficult and the one that
requires all the important insights, while the second part can be solved through the application of
a standard technique. We are going to split the core of the solution in two parts, the first of which
deals with the characterization of optimal solutions. Then, in the second, we will explain how to
compute the answer efficiently in the restricted search space and we will discuss some improvements
and further considerations.

Preliminary observations and notation
First, however, let us set up the bases. It goes without saying that we are dealing with a graph —
actually, a tree — problem. Also, the statement is deceptively straightforward: assign a permutation
of {1, . . . , n} to the vertices so as to maximize the number of increasing paths.

And here comes the first non-trivial (however simple) idea: we are actually going to consider ways
to orient the edges of the tree, and find an orientation that maximizes the number of directed
paths; we forget about the vertex numeration altogether. After all, an assignment of the numbers
1, . . . , n naturally induces an orientation of the edges, where edge (u, v) points towards v if u < v
and towards u otherwise. This begs the question of whether the converse is also true, i.e., does
an orientation of the edges “induce” a numbering of the vertices? The answer is, in general, no.
Nevertheless, we would still be happy if it were true that every orientation is induced by at
least one numbering (for this would mean that, in switching to the orientation perspective, we
wouldn’t be considering forbidden configurations). Luckily, it is, and it follows immediately from
the existence of a topological sorting of the vertices of a directed tree (which is, in fact, a DAG):
just number the vertices in their topological order! (Incidentally, note that any topological order
works, and since it is generally not unique, neither is the numbering.)

From now on, we shall call a path any path in the undirected tree, as opposed to directed path which
refers to the underlying orientation of the edges (supposing we have fixed one in the context of the
sentence). A single vertex is both a path and a directed path. Given an orientation of the tree, we
call its value the number of directed paths it produces; therefore, the problem asks to maximize the
value of an orientation. We say that a (directed) path has length ℓ if it is made up of ℓ vertices.
Finally, we denote d(u, v) the distance between u and v in the undirected tree.

Characterizing the optimal solutions
The next two results are crucial.

Lemma 1. Fix an orientation of the edges. Suppose there exist four distinct vertices a, b, c and d
such that (refer to the figure below for clarity):

• there are edges a→ b and c→ d;

• there is a directed path from c to b.

Then, we can produce an orientation with a higher value by either reversing the edge a→ b and all
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the edges in the subtree rooted at a which does not contain b, or by reversing the edge c → d and
all the edges in the subtree rooted at d which does not contain c.

a b c d· · ·

Proof. Let’s see what happens, in terms of value, when we reverse edge a → b and the subtree
rooted at a. Let:

• A be the number of directed paths (in the initial orientation) ending at a, including the path
of length 1;

• Bout be the number of directed paths of length ≥ 2 starting at b;

• Bin be the number of directed paths of length ≥ 2 ending at b that do not go through edge
a→ b.

When inverting the edges, most paths stay the same (or are inverted as a whole). It isn’t hard to
see that only two kinds of paths change in nature (that is, either become or cease to be directed).
The directed paths starting at a vertex in the subtree rooted at a, going through edge a → b, and
ending at some vertex u ̸= b, are no longer directed after the inversion; there are A ·Bout of these.
However, the (non-directed) paths of the form

v → · · · → b← a← · · · ← w,

where the first part has only right-edges, the second part has only left-edges, and v ̸= b, become
directed. There are A · Bin of these. Adding up the contributions, we get that the value difference
is ∆1 = A(Bin −Bout).

With similar reasoning and notation, if we invert the edge c → d and the subtree rooted at d, the
vaue increases (or decreased) by ∆2 = D(Cout −Cin). Now, since every directed path beginning at
b can be extended to the left until we get to c (i.e. we can pre-append the path c→ · · · → b), and
since c → · · · → b is itself a path beginning at c, it holds Cout ≥ Bout + 1. Likewise, we can prove
Bin ≥ Cin +1. Thus, (Bin−Bout) + (Cout−Cin) ≥ 2 and without loss of generality Bin−Bout > 0,
which implies, since A > 0, that ∆1 > 0 as desired. ■

From Lemma 1 it follows that, in an orientation that yields the optimal solution, every path “changes
direction” at most once. Formally: given a path (v1, v2, . . . , vk), there exists at most one index
2 ≤ i ≤ k − 1 such that the path (vi−1, vi, vi+1) is not directed. This condition is equivalent to a
very simple property which opens up the way to an efficient algorithm to find the solution.

Lemma 2. Suppose a directed tree satisfies the aforementioned condition. Then, there exists a
(not necessarily unique) vertex v∗ such that all paths having v∗ as an endpoint are also directed
paths.

Proof. We shall start by fixing an arbitrary vertex v and rooting the tree at v. Call a vertex u ̸= v
evil if it has a child w such that the path (v, . . . , u, w) changes direction at u. If there are no evil
vertices, v is a valid candidate for v∗ and we are done.
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Otherwise, all evil vertices must lie in the same v-subtree. Indeed, if u and u′ were two evil vertices
belonging to different subtrees, and w, w′ the respective children, the path (w, u, . . . , v, . . . , u′, w′)
would change direction at least twice (see figure below, (a)). Moreover, if u is an evil vertex and
r is the root of its subtree, the edge (v, r) must point in a different direction than all other edges
incident on v. To see why, suppose without loss of generality v → r and v → r′ ̸= r; then the path
(w, u, . . . , r, v, r′) changes direction twice (see figure below, (b)).

v

u

w

· ·
·

u′

w′

· ·
·

(a)

v

r r′

u

w

· ·
·

(b)

Thanks to the previous observations, if we replace v with r the set of evil vertices decreases or stays
the same. If we repeat this argument while there are evil vertices, we will produce a downward path
in the tree rooted at v, which must stop eventually, at which point the number of evil vertices must
vanish. ■

Thanks to Lemmas 1 and 2 combined, we know that any optimal orientation admits the existence
of a vertex v∗ satisfying the property of Lemma 2. This makes us finally able to tackle the problem
algorithmically.

Computing the maximum
Call a vertex v∗ that satisfies the property of Lemma 2 a crossroad. We are going to iterate over all
n vertices and find the maximum value of an orientation where said vertex is a crossroad.

Thus, fix a vertex v∗ and consider the deg(v∗) subtrees the tree gets split into if we erase v∗. In
an optimal orientation, in each subtree all edges point either “inwards” or “outwards”: let S be the
sum of the sizes of subtrees of the first kind, and T be the sum of the sizes of the subtrees of the
second kind. Of course, S + T = n− 1. Let’s calculate the value of such an orientation.

• There are n directed paths having v∗ as an endpoint.

• The directed paths lying entirely in one subtree are
∑
v ̸=v∗

d(v∗, v).

• Finally, the paths starting in a subtree of the first kind and ending in a subtree of the second
kind contribute with an additional S · T term.

Observe that the first two terms are independent of S and T . It is trivial to compute the sizes of
the subtrees in O(deg(v∗)) after preprocessing. Furthermore, the sum of distances can be updated
in O(1) when moving from v∗ to one of its neighbors. As for the third term, it is clear that it is
maximized when S and T are as close as possible to n−1

2 . If one of the subtrees has size k ≥ n
2
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(there can only be one of those), the way of doing so is trivial: just orient the edges of the big
subtree one way, and all other edges the other way, so that ST = k(n− 1− k).

The matter is more complicated if all subtrees have sizes smaller than n
2 . In this case, v∗ is a

centroid of the tree. Recall that any tree has exactly one or two centroids — and the latter can
only occur if n is even. What we are dealing with is an instance of the knapsack problem: we
are given positive integers k1, . . . , kdeg(v∗) — the sizes of the subtrees — whose sum is n − 1, and
we shall find a subset whose sum is as close as possible to n−1

2 . The naïve dynamic programming
solution runs in O(n2) at worst (with O(n) space), way too slow for our purposes. We can optimize
the runtime, reducing it by a factor 32, via the use of bitsets. This is still not enough. There is a
standard, yet somewhat advanced, trick to speed the algorithm up to O

(
n
√
n

sizeof(int)

)
. We won’t go

over it here, but you can find a complete tutorial in this Codeforces blog entry (under Subset Sum
Speedup 1 ), together with a number of other interesting related techniques. Since we only need to
run this algorithm at most twice, this final optimization, carefully implemented, does the trick.

Finally, let’s comment further on the nature of the characterization. So far, we know very little
about the crossroad v∗, but intuitively it makes sense that it should be “in the middle” of the tree
in order to yield an optimal solution.

Lemma 3. There is an optimal solution where at least one centroid of the tree is a crossroad.

Proof. Consider an optimal orientation where a vertex v∗, which is not a centroid, is a crossroad.
Let τ be the subtree of size ≥ n

2 . We have already observed that all edges of τ must point (WLOG)
toward v∗, and all other edges away from v∗. Now let v be the neighbor of v∗ belonging to τ . If
we make v a crossroad, by inverting edge v → v∗ and keeping the orientations of all other edges,
a simple computation shows that the value of the new configuration has not decreased. We can
therefore iterate until we reach a centroid. ■

Although this result is not necessary to solve the problem, it is relatively easy to guess and prove,
and it simplifies the implementation. One can even prove this slightly stronger conclusion: for each
centroid, there is an optimal orientation in which it is a crossroad.

[It was briefly considered whether to give this problem with n ≤ 107. It turns out that the “slow”
part of the algorithm is not the optimized knapsack, but rather the tree traversal needed to find the
centroid. To fit the new constraint, one must come up with a way to do this without any traversal.
Taking a look at the input format might be a good starting point...]
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L Circular Maze
Author: Simon Mauras
Preparation: Simon Mauras

In this task, you are given circular mazes described by collections of walls, which can be either
circular (constant radius) or straight (constant angle). The goal is to determine if a maze can be
solved, that is, if there is a path from the center to the outside which does not cross any wall.

Reducing the problem to a grid maze
The first remark to be made is that this task can be reformulated into the much simpler problem
of finding a path in a grid maze (with the left and right sides of the grid being connected by some
portal). The image bellow illustrates the grid obtained from the first input sample, where each row
corresponds to a radius (between 1 and 20) and each column corresponds to an angle (between 0
and 360). A possible path solving the maze is displayed in orange.

The first part of the solution consists of building the grid maze, and fill 2D arrays with the walls.
Because walls do not overlap, it is sufficient to iterate over each wall (number of operations is in
the order of t · 20 · 360 ≤ 106). Observe that with overlapping walls, the naïve implementation
might be too slow (worst case is t ·n · 360 ≥ 108), but one could compute cumulative sums of arrays
containing the endpoints of walls.

Finally, we build the undirected graph where each cell is connected to the neighbouring cells such
that there is no wall in between.

Solving the grid maze
Now that we have a grid maze, where each cell is connected to up to 4 neighbours, we need to
determine if there is a path between the inside and the outside of the maze. The only remaining
detail is to describe how we deal with the inside (below radius r = 1) and the outside of the maze
(above radius r = 20). Multiple approaches exist:

• Adding two “sentinel” rows of cells to the maze, one at the bottom (inside) and one at the top
(outside). Because there are no walls in sentinel rows, it is enough to pick (arbitrarily) one cell
from each row and check if there is a path between them.

• Adding two special cells, one for the inside and one for the outside, connected (when there is
no wall) to cells from the bottom and the top row. It is now enough to check if there is a path
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between these two special cells.

Finally, checking if there is a path between two cells can be done with various algorithms computing
the connected components of a graph.

• Depth-first search: the procedure builds the component of a starting cell by exploring (recur-
sively) adjacent cells, making sure it does not explore the same cell twice.

• Breadth-first search: the procedure builds the component of a starting cell by exploring (iter-
atively) cells at distance 1, then 2, etc.

• Disjoint-Set Union data structure: starting from a collection of singleton sets (each containing
one cell), the data structure can merge sets (containing two neighbouring cells). The resulting
collection of sets corresponds to connected components.
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